Source:SLASH'EM 0.0.7E7F2/display.c
Jump to navigation
Jump to search
Below is the full text to display.c from the source code of SLASH'EM 0.0.7E7F2. To link to a particular line, write [[Source:SLASH'EM 0.0.7E7F2/display.c#line123]], for example.
Source code for vanilla NetHack is at Source code.
The NetHack General Public License applies to screenshots, source code and other content from NetHack.
This content was modified from the original NetHack source code distribution (by splitting up NetHack content between wiki pages, and possibly further editing). See the page history for a list of who changed it, and on what dates.
1. /* SCCS Id: @(#)display.c 3.4 2003/02/19 */ 2. /* Copyright (c) Dean Luick, with acknowledgements to Kevin Darcy */ 3. /* and Dave Cohrs, 1990. */ 4. /* NetHack may be freely redistributed. See license for details. */ 5. 6. /* 7. * THE NEW DISPLAY CODE 8. * 9. * The old display code has been broken up into three parts: vision, display, 10. * and drawing. Vision decides what locations can and cannot be physically 11. * seen by the hero. Display decides _what_ is displayed at a given location. 12. * Drawing decides _how_ to draw a monster, fountain, sword, etc. 13. * 14. * The display system uses information from the vision system to decide 15. * what to draw at a given location. The routines for the vision system 16. * can be found in vision.c and vision.h. The routines for display can 17. * be found in this file (display.c) and display.h. The drawing routines 18. * are part of the window port. See doc/window.doc for the drawing 19. * interface. 20. * 21. * The display system deals with an abstraction called a glyph. Anything 22. * that could possibly be displayed has a unique glyph identifier. 23. * 24. * What is seen on the screen is a combination of what the hero remembers 25. * and what the hero currently sees. Objects and dungeon features (walls 26. * doors, etc) are remembered when out of sight. Monsters and temporary 27. * effects are not remembered. Each location on the level has an 28. * associated glyph. This is the hero's _memory_ of what he or she has 29. * seen there before. 30. * 31. * Display rules: 32. * 33. * If the location is in sight, display in order: 34. * visible (or sensed) monsters 35. * visible objects 36. * known traps 37. * background 38. * 39. * If the location is out of sight, display in order: 40. * sensed monsters (telepathy) 41. * memory 42. * 43. * 44. * 45. * Here is a list of the major routines in this file to be used externally: 46. * 47. * newsym 48. * 49. * Possibly update the screen location (x,y). This is the workhorse routine. 50. * It is always correct --- where correct means following the in-sight/out- 51. * of-sight rules. **Most of the code should use this routine.** This 52. * routine updates the map and displays monsters. 53. * 54. * 55. * map_background 56. * map_object 57. * map_trap 58. * map_invisible 59. * unmap_object 60. * 61. * If you absolutely must override the in-sight/out-of-sight rules, there 62. * are two possibilities. First, you can mess with vision to force the 63. * location in sight then use newsym(), or you can use the map_* routines. 64. * The first has not been tried [no need] and the second is used in the 65. * detect routines --- detect object, magic mapping, etc. The map_* 66. * routines *change* what the hero remembers. All changes made by these 67. * routines will be sticky --- they will survive screen redraws. Do *not* 68. * use these for things that only temporarily change the screen. These 69. * routines are also used directly by newsym(). unmap_object is used to 70. * clear a remembered object when/if detection reveals it isn't there. 71. * 72. * 73. * show_glyph 74. * 75. * This is direct (no processing in between) buffered access to the screen. 76. * Temporary screen effects are run through this and its companion, 77. * flush_screen(). There is yet a lower level routine, print_glyph(), 78. * but this is unbuffered and graphic dependent (i.e. it must be surrounded 79. * by graphic set-up and tear-down routines). Do not use print_glyph(). 80. * 81. * 82. * see_monsters 83. * see_objects 84. * see_traps 85. * 86. * These are only used when something affects all of the monsters or 87. * objects or traps. For objects and traps, the only thing is hallucination. 88. * For monsters, there are hallucination and changing from/to blindness, etc. 89. * 90. * 91. * tmp_at 92. * 93. * This is a useful interface for displaying temporary items on the screen. 94. * Its interface is different than previously, so look at it carefully. 95. * 96. * 97. * 98. * Parts of the rm structure that are used: 99. * 100. * typ - What is really there. 101. * glyph - What the hero remembers. This will never be a monster. 102. * Monsters "float" above this. 103. * lit - True if the position is lit. An optimization for 104. * lit/unlit rooms. 105. * waslit - True if the position was *remembered* as lit. 106. * seenv - A vector of bits representing the directions from which the 107. * hero has seen this position. The vector's primary use is 108. * determining how walls are seen. E.g. a wall sometimes looks 109. * like stone on one side, but is seen as a wall from the other. 110. * Other uses are for unmapping detected objects and felt 111. * locations, where we need to know if the hero has ever 112. * seen the location. 113. * flags - Additional information for the typ field. Different for 114. * each typ. 115. * horizontal - Indicates whether the wall or door is horizontal or 116. * vertical. 117. */ 118. #include "hack.h" 119. #include "region.h" 120. 121. STATIC_DCL void FDECL(display_monster,(XCHAR_P,XCHAR_P,struct monst *,int,XCHAR_P)); 122. STATIC_DCL int FDECL(swallow_to_glyph, (int, int)); 123. STATIC_DCL void FDECL(display_warning,(struct monst *)); 124. 125. STATIC_DCL int FDECL(check_pos, (int, int, int)); 126. #ifdef WA_VERBOSE 127. STATIC_DCL boolean FDECL(more_than_one, (int, int, int, int, int)); 128. #endif 129. STATIC_DCL int FDECL(set_twall, (int,int, int,int, int,int, int,int)); 130. STATIC_DCL int FDECL(set_wall, (int, int, int)); 131. STATIC_DCL int FDECL(set_corn, (int,int, int,int, int,int, int,int)); 132. STATIC_DCL int FDECL(set_crosswall, (int, int)); 133. STATIC_DCL void FDECL(set_seenv, (struct rm *, int, int, int, int)); 134. STATIC_DCL void FDECL(t_warn, (struct rm *)); 135. STATIC_DCL int FDECL(wall_angle, (struct rm *)); 136. STATIC_DCL int FDECL(back_to_cmap, (XCHAR_P, XCHAR_P)); 137. 138. STATIC_VAR boolean transp; /* cached transparency flag for current tileset */ 139. 140. #ifdef INVISIBLE_OBJECTS 141. /* 142. * vobj_at() 143. * 144. * Returns a pointer to an object if the hero can see an object at the 145. * given location. This takes care of invisible objects. NOTE, this 146. * assumes that the hero is not blind and on top of the object pile. 147. * It does NOT take into account that the location is out of sight, or, 148. * say, one can see blessed, etc. 149. */ 150. struct obj * 151. vobj_at(x,y) 152. xchar x,y; 153. { 154. register struct obj *obj = level.objects[x][y]; 155. 156. while (obj) { 157. if (!obj->oinvis || See_invisible) return obj; 158. obj = obj->nexthere; 159. } 160. return ((struct obj *) 0); 161. } 162. #endif /* else vobj_at() is defined in display.h */ 163. 164. /* 165. * magic_map_background() 166. * 167. * This function is similar to map_background (see below) except we pay 168. * attention to and correct unexplored, lit ROOM and CORR spots. 169. */ 170. void 171. magic_map_background(x, y, show) 172. xchar x,y; 173. int show; 174. { 175. int cmap = back_to_cmap(x,y); /* assumes hero can see x,y */ 176. struct rm *lev = &levl[x][y]; 177. 178. /* 179. * Correct for out of sight lit corridors and rooms that the hero 180. * doesn't remember as lit. 181. */ 182. if (!cansee(x,y) && !lev->waslit) { 183. /* Floor spaces are dark if unlit. Corridors are dark if unlit. */ 184. if (lev->typ == ROOM && cmap == S_room) 185. cmap = S_stone; 186. else if (lev->typ == CORR && cmap == S_litcorr) 187. cmap = S_corr; 188. } 189. if (level.flags.hero_memory) 190. #ifdef DISPLAY_LAYERS 191. lev->mem_bg = cmap; 192. #else 193. lev->glyph = cmap_to_glyph(cmap); 194. #endif 195. if (show || transp) show_glyph(x,y, cmap_to_glyph(cmap)); 196. } 197. 198. /* 199. * The routines map_background(), map_object(), and map_trap() could just 200. * as easily be: 201. * 202. * map_glyph(x,y,glyph,show) 203. * 204. * Which is called with the xx_to_glyph() in the call. Then I can get 205. * rid of 3 routines that don't do very much anyway. And then stop 206. * having to create fake objects and traps. However, I am reluctant to 207. * make this change. 208. */ 209. /* FIXME: some of these use xchars for x and y, and some use ints. Make 210. * this consistent. 211. */ 212. 213. /* 214. * map_background() 215. * 216. * Make the real background part of our map. This routine assumes that 217. * the hero can physically see the location. Update the screen if directed. 218. */ 219. void 220. map_background(x, y, show) 221. register xchar x,y; 222. register int show; 223. { 224. register int cmap = back_to_cmap(x,y); 225. 226. if (level.flags.hero_memory) 227. #ifdef DISPLAY_LAYERS 228. levl[x][y].mem_bg = cmap; 229. #else 230. levl[x][y].glyph = cmap_to_glyph(cmap); 231. #endif 232. if (show || transp) show_glyph(x,y, cmap_to_glyph(cmap)); 233. } 234. 235. /* 236. * map_trap() 237. * 238. * Map the trap and print it out if directed. This routine assumes that the 239. * hero can physically see the location. 240. */ 241. void 242. map_trap(trap, show) 243. register struct trap *trap; 244. register int show; 245. { 246. register int x = trap->tx, y = trap->ty; 247. register int cmap = trap_to_cmap(trap); 248. 249. if (level.flags.hero_memory) 250. #ifdef DISPLAY_LAYERS 251. levl[x][y].mem_trap = 1 + cmap - MAXDCHARS; 252. #else 253. levl[x][y].glyph = cmap_to_glyph(cmap); 254. #endif 255. if (show || transp) show_glyph(x, y, cmap_to_glyph(cmap)); 256. } 257. 258. /* 259. * map_object() 260. * 261. * Map the given object. This routine assumes that the hero can physically 262. * see the location of the object. Update the screen if directed. 263. */ 264. void 265. map_object(obj, show) 266. register struct obj *obj; 267. register int show; 268. { 269. register int x = obj->ox, y = obj->oy; 270. register int glyph = obj_to_glyph(obj); 271. 272. if (level.flags.hero_memory) 273. #ifdef DISPLAY_LAYERS 274. if ((levl[x][y].mem_corpse = glyph_is_body(glyph))) 275. levl[x][y].mem_obj = 1 + glyph_to_body(glyph); 276. else 277. levl[x][y].mem_obj = 1 + glyph_to_obj(glyph); 278. #else 279. levl[x][y].glyph = glyph; 280. #endif 281. if (show) show_glyph(x, y, glyph); 282. } 283. 284. /* 285. * map_invisible() 286. * 287. * Make the hero remember that a square contains an invisible monster. 288. * This is a special case in that the square will continue to be displayed 289. * this way even when the hero is close enough to see it. To get rid of 290. * this and display the square's actual contents, use unmap_object() followed 291. * by newsym() if necessary. 292. */ 293. void 294. map_invisible(x, y) 295. register xchar x, y; 296. { 297. if (x != u.ux || y != u.uy) { /* don't display I at hero's location */ 298. if (level.flags.hero_memory) 299. #ifdef DISPLAY_LAYERS 300. levl[x][y].mem_invis = 1; 301. #else 302. levl[x][y].glyph = GLYPH_INVISIBLE; 303. #endif 304. show_glyph(x, y, GLYPH_INVISIBLE); 305. } 306. } 307. 308. /* 309. * unmap_object() 310. * 311. * Remove something from the map when the hero realizes it's not there any 312. * more. Replace it with background or known trap, but not with any other 313. * If this is used for detection, a full screen update is imminent anyway; 314. * if this is used to get rid of an invisible monster notation, we might have 315. * to call newsym(). 316. */ 317. void 318. unmap_object(x, y) 319. register int x, y; 320. { 321. #ifndef DISPLAY_LAYERS 322. register struct trap *trap; 323. #endif 324. 325. if (!level.flags.hero_memory) return; 326. 327. #ifdef DISPLAY_LAYERS 328. levl[x][y].mem_invis = levl[x][y].mem_corpse = levl[x][y].mem_obj = 0; 329. #else 330. if ((trap = t_at(x,y)) != 0 && trap->tseen && !covers_traps(x,y)) 331. map_trap(trap, 0); 332. else if (levl[x][y].seenv) { 333. struct rm *lev = &levl[x][y]; 334. 335. map_background(x, y, 0); 336. 337. /* turn remembered dark room squares dark */ 338. if (!lev->waslit && lev->glyph == cmap_to_glyph(S_room) && 339. lev->typ == ROOM) 340. lev->glyph = cmap_to_glyph(S_stone); 341. } else 342. levl[x][y].glyph = cmap_to_glyph(S_stone); /* default val */ 343. #endif 344. } 345. 346. #define DETECTED 2 347. #define PHYSICALLY_SEEN 1 348. #define is_worm_tail(mon) ((mon) && ((x != (mon)->mx) || (y != (mon)->my))) 349. 350. /* 351. * map_location() 352. * 353. * Make whatever at this location show up. This is only for non-living 354. * things. This will not handle feeling invisible objects correctly. 355. * 356. * Internal to display.c, this is a #define for speed. 357. */ 358. #ifdef DISPLAY_LAYERS 359. #define _map_location(x,y,show) \ 360. { \ 361. register struct obj *obj; \ 362. register struct trap *trap; \ 363. \ 364. if (level.flags.hero_memory) { \ 365. if ((obj = vobj_at(x, y)) && !covers_objects(x, y)) \ 366. map_object(obj, FALSE); \ 367. else \ 368. levl[x][y].mem_corpse = levl[x][y].mem_obj = 0; \ 369. if ((trap = t_at(x, y)) && trap->tseen && !covers_traps(x, y)) \ 370. map_trap(trap, FALSE); \ 371. else \ 372. levl[x][y].mem_trap = 0; \ 373. map_background(x, y, FALSE); \ 374. if (show) show_glyph(x, y, memory_glyph(x, y)); \ 375. } else if ((obj = vobj_at(x,y)) && !covers_objects(x,y)) \ 376. map_object(obj,show); \ 377. else if ((trap = t_at(x,y)) && trap->tseen && !covers_traps(x,y)) \ 378. map_trap(trap,show); \ 379. else \ 380. map_background(x,y,show); \ 381. } 382. #else /* DISPLAY_LAYERS */ 383. #define _map_location(x,y,show) \ 384. { \ 385. register struct obj *obj; \ 386. register struct trap *trap; \ 387. \ 388. if ((obj = vobj_at(x,y)) && !covers_objects(x,y)) \ 389. map_object(obj,show); \ 390. else if ((trap = t_at(x,y)) && trap->tseen && !covers_traps(x,y)) \ 391. map_trap(trap,show); \ 392. else \ 393. map_background(x,y,show); \ 394. } 395. #endif /* DISPLAY_LAYERS */ 396. 397. void 398. map_location(x,y,show) 399. int x, y, show; 400. { 401. _map_location(x,y,show); 402. } 403. 404. int memory_glyph(x, y) 405. int x, y; 406. { 407. #ifdef DISPLAY_LAYERS 408. if (levl[x][y].mem_invis) 409. return GLYPH_INVISIBLE; 410. else if (levl[x][y].mem_obj) 411. if (levl[x][y].mem_corpse) 412. return body_to_glyph(levl[x][y].mem_obj - 1); 413. else 414. return objnum_to_glyph(levl[x][y].mem_obj - 1); 415. else if (levl[x][y].mem_trap) 416. return cmap_to_glyph(levl[x][y].mem_trap - 1 + MAXDCHARS); 417. else 418. return cmap_to_glyph(levl[x][y].mem_bg); 419. #else 420. return levl[x][y].glyph; 421. #endif 422. } 423. 424. void clear_memory_glyph(x, y, to) 425. int x, y, to; 426. { 427. #ifdef DISPLAY_LAYERS 428. levl[x][y].mem_bg = to; 429. levl[x][y].mem_trap = 0; 430. levl[x][y].mem_obj = 0; 431. levl[x][y].mem_corpse = 0; 432. levl[x][y].mem_invis = 0; 433. #else 434. levl[x][y].glyph = cmap_to_glyph(to); 435. #endif 436. } 437. 438. /* 439. * display_monster() 440. * 441. * Note that this is *not* a map_XXXX() function! Monsters sort of float 442. * above everything. 443. * 444. * Yuck. Display body parts by recognizing that the display position is 445. * not the same as the monster position. Currently the only body part is 446. * a worm tail. 447. * 448. */ 449. STATIC_OVL void 450. display_monster(x, y, mon, sightflags, worm_tail) 451. register xchar x, y; /* display position */ 452. register struct monst *mon; /* monster to display */ 453. int sightflags; /* 1 if the monster is physically seen */ 454. /* 2 if detected using Detect_monsters */ 455. register xchar worm_tail; /* mon is actually a worm tail */ 456. { 457. register boolean mon_mimic = (mon->m_ap_type != M_AP_NOTHING); 458. register int sensed = mon_mimic && 459. (Protection_from_shape_changers || sensemon(mon)); 460. /* 461. * We must do the mimic check first. If the mimic is mimicing something, 462. * and the location is in sight, we have to change the hero's memory 463. * so that when the position is out of sight, the hero remembers what 464. * the mimic was mimicing. 465. */ 466. 467. if (mon_mimic && (sightflags == PHYSICALLY_SEEN)) { 468. switch (mon->m_ap_type) { 469. default: 470. impossible("display_monster: bad m_ap_type value [ = %d ]", 471. (int) mon->m_ap_type); 472. case M_AP_NOTHING: 473. show_glyph(x, y, mon_to_glyph(mon)); 474. break; 475. 476. case M_AP_FURNITURE: { 477. /* 478. * This is a poor man's version of map_background(). I can't 479. * use map_background() because we are overriding what is in 480. * the 'typ' field. Maybe have map_background()'s parameters 481. * be (x,y,glyph) instead of just (x,y). 482. * 483. * mappearance is currently set to an S_ index value in 484. * makemon.c. 485. */ 486. register int glyph = cmap_to_glyph(mon->mappearance); 487. #ifdef DISPLAY_LAYERS 488. levl[x][y].mem_bg = mon->mappearance; 489. #else 490. levl[x][y].glyph = glyph; 491. #endif 492. if (!sensed) show_glyph(x,y, glyph); 493. break; 494. } 495. 496. case M_AP_OBJECT: { 497. struct obj obj; /* Make a fake object to send */ 498. /* to map_object(). */ 499. obj.ox = x; 500. obj.oy = y; 501. obj.otyp = mon->mappearance; 502. obj.corpsenm = PM_TENGU; /* if mimicing a corpse */ 503. map_object(&obj,!sensed); 504. break; 505. } 506. 507. case M_AP_MONSTER: 508. show_glyph(x,y, monnum_to_glyph(what_mon((int)mon->mappearance))); 509. break; 510. } 511. 512. } 513. 514. /* If the mimic is unsucessfully mimicing something, display the monster */ 515. if (!mon_mimic || sensed) { 516. int num; 517. 518. /* [ALI] Only use detected glyphs when monster wouldn't be 519. * visible by any other means. 520. */ 521. if (sightflags == DETECTED) { 522. if (worm_tail) 523. num = detected_monnum_to_glyph(what_mon(PM_LONG_WORM_TAIL)); 524. else 525. num = detected_mon_to_glyph(mon); 526. } else if (mon->mtame && !Hallucination) { 527. if (worm_tail) 528. num = petnum_to_glyph(PM_LONG_WORM_TAIL); 529. else 530. num = pet_to_glyph(mon); 531. } else { 532. if (worm_tail) 533. num = monnum_to_glyph(what_mon(PM_LONG_WORM_TAIL)); 534. else 535. num = mon_to_glyph(mon); 536. } 537. show_glyph(x,y,num); 538. } 539. } 540. /* 541. * display_warning() 542. * 543. * This is also *not* a map_XXXX() function! Monster warnings float 544. * above everything just like monsters do, but only if the monster 545. * is not showing. 546. * 547. * Do not call for worm tails. 548. */ 549. STATIC_OVL void 550. display_warning(mon) 551. register struct monst *mon; 552. { 553. int x = mon->mx, y = mon->my; 554. int wl = (int) (mon->m_lev / 4); 555. int glyph; 556. 557. if (mon_warning(mon)) { 558. if (wl > WARNCOUNT - 1) wl = WARNCOUNT - 1; 559. /* 3.4.1: this really ought to be rn2(WARNCOUNT), but value "0" 560. isn't handled correctly by the what_is routine so avoid it */ 561. if (Hallucination) wl = rn1(WARNCOUNT-1,1); 562. glyph = warning_to_glyph(wl); 563. } else if (MATCH_WARN_OF_MON(mon)) { 564. glyph = mon_to_glyph(mon); 565. } else { 566. impossible("display_warning did not match warning type?"); 567. return; 568. } 569. show_glyph(x, y, glyph); 570. } 571. 572. /* 573. * feel_location() 574. * 575. * Feel the given location. This assumes that the hero is blind and that 576. * the given position is either the hero's or one of the eight squares 577. * adjacent to the hero (except for a boulder push). 578. */ 579. void 580. feel_location(x, y) 581. xchar x, y; 582. { 583. struct rm *lev = &(levl[x][y]); 584. struct obj *boulder; 585. register struct monst *mon; 586. 587. /* If the hero's memory of an invisible monster is accurate, we want to keep 588. * him from detecting the same monster over and over again on each turn. 589. * We must return (so we don't erase the monster). (We must also, in the 590. * search function, be sure to skip over previously detected 'I's.) 591. */ 592. if (memory_is_invisible(x,y) && m_at(x,y)) return; 593. 594. /* The hero can't feel non pool locations while under water. */ 595. if (Underwater && !Is_waterlevel(&u.uz) && ! is_pool(x,y)) 596. return; 597. 598. /* Set the seen vector as if the hero had seen it. It doesn't matter */ 599. /* if the hero is levitating or not. */ 600. set_seenv(lev, u.ux, u.uy, x, y); 601. 602. if (Levitation && !Is_airlevel(&u.uz) && !Is_waterlevel(&u.uz)) { 603. /* 604. * Levitation Rules. It is assumed that the hero can feel the state 605. * of the walls around herself and can tell if she is in a corridor, 606. * room, or doorway. Boulders are felt because they are large enough. 607. * Anything else is unknown because the hero can't reach the ground. 608. * This makes things difficult. 609. * 610. * Check (and display) in order: 611. * 612. * + Stone, walls, and closed doors. 613. * + Boulders. [see a boulder before a doorway] 614. * + Doors. 615. * + Room/water positions 616. * + Everything else (hallways!) 617. */ 618. if (IS_ROCK(lev->typ) || (IS_DOOR(lev->typ) && 619. (lev->doormask & (D_LOCKED | D_CLOSED)))) { 620. map_background(x, y, 1); 621. } else if ((boulder = sobj_at(BOULDER,x,y)) != 0) { 622. map_object(boulder, 1); 623. } else if (IS_DOOR(lev->typ)) { 624. map_background(x, y, 1); 625. } else if (IS_ROOM(lev->typ) || IS_POOL(lev->typ)) { 626. /* 627. * An open room or water location. Normally we wouldn't touch 628. * this, but we have to get rid of remembered boulder symbols. 629. * This will only occur in rare occations when the hero goes 630. * blind and doesn't find a boulder where expected (something 631. * came along and picked it up). We know that there is not a 632. * boulder at this location. Show fountains, pools, etc. 633. * underneath if already seen. Otherwise, show the appropriate 634. * floor symbol. 635. * 636. * Similarly, if the hero digs a hole in a wall or feels a location 637. * that used to contain an unseen monster. In these cases, 638. * there's no reason to assume anything was underneath, so 639. * just show the appropriate floor symbol. If something was 640. * embedded in the wall, the glyph will probably already 641. * reflect that. Don't change the symbol in this case. 642. * 643. * This isn't quite correct. If the boulder was on top of some 644. * other objects they should be seen once the boulder is removed. 645. * However, we have no way of knowing that what is there now 646. * was there then. So we let the hero have a lapse of memory. 647. * We could also just display what is currently on the top of the 648. * object stack (if anything). 649. */ 650. if (remembered_object(x, y) == BOULDER) { 651. if (lev->typ != ROOM && lev->seenv) { 652. map_background(x, y, 1); 653. } else { 654. #ifdef DISPLAY_LAYERS 655. lev->mem_bg = lev->waslit ? S_room : S_stone; 656. #else 657. lev->glyph = lev->waslit ? cmap_to_glyph(S_room) : 658. cmap_to_glyph(S_stone); 659. #endif 660. show_glyph(x, y, memory_glyph(x, y)); 661. } 662. #ifdef DISPLAY_LAYERS 663. } else if ((lev->mem_bg >= S_stone && lev->mem_bg < S_room) || 664. memory_is_invisible(x, y)) { 665. lev->mem_bg = lev->waslit ? S_room : S_stone; 666. #else 667. } else if ((lev->glyph >= cmap_to_glyph(S_stone) && 668. lev->glyph < cmap_to_glyph(S_room)) || 669. glyph_is_invisible(levl[x][y].glyph)) { 670. lev->glyph = lev->waslit ? cmap_to_glyph(S_room) : 671. cmap_to_glyph(S_stone); 672. #endif 673. show_glyph(x, y, memory_glyph(x, y)); 674. } 675. } else { 676. /* We feel it (I think hallways are the only things left). */ 677. map_background(x, y, 1); 678. /* Corridors are never felt as lit (unless remembered that way) */ 679. /* (lit_corridor only). */ 680. #ifdef DISPLAY_LAYERS 681. if (lev->typ == CORR && lev->mem_bg == S_litcorr && !lev->waslit) 682. show_glyph(x, y, cmap_to_glyph(lev->mem_bg = S_corr)); 683. #else 684. if (lev->typ == CORR && 685. lev->glyph == cmap_to_glyph(S_litcorr) && !lev->waslit) 686. show_glyph(x, y, lev->glyph = cmap_to_glyph(S_corr)); 687. #endif 688. } 689. } else { 690. _map_location(x, y, 1); 691. 692. if (Punished) { 693. /* 694. * A ball or chain is only felt if it is first on the object 695. * location list. Otherwise, we need to clear the felt bit --- 696. * something has been dropped on the ball/chain. If the bit is 697. * not cleared, then when the ball/chain is moved it will drop 698. * the wrong glyph. 699. */ 700. if (uchain->ox == x && uchain->oy == y) { 701. if (level.objects[x][y] == uchain) 702. u.bc_felt |= BC_CHAIN; 703. else 704. u.bc_felt &= ~BC_CHAIN; /* do not feel the chain */ 705. } 706. if (!carried(uball) && uball->ox == x && uball->oy == y) { 707. if (level.objects[x][y] == uball) 708. u.bc_felt |= BC_BALL; 709. else 710. u.bc_felt &= ~BC_BALL; /* do not feel the ball */ 711. } 712. } 713. 714. /* Floor spaces are dark if unlit. Corridors are dark if unlit. */ 715. #ifdef DISPLAY_LAYERS 716. if (lev->typ == ROOM && lev->mem_bg == S_room && !lev->waslit) { 717. lev->mem_bg = S_stone; 718. show_glyph(x,y, memory_glyph(x, y)); 719. } else if (lev->typ == CORR && 720. lev->mem_bg == S_litcorr && !lev->waslit) { 721. lev->mem_bg = S_corr; 722. show_glyph(x,y, memory_glyph(x, y)); 723. } 724. #else 725. if (lev->typ == ROOM && 726. lev->glyph == cmap_to_glyph(S_room) && !lev->waslit) 727. show_glyph(x,y, lev->glyph = cmap_to_glyph(S_stone)); 728. else if (lev->typ == CORR && 729. lev->glyph == cmap_to_glyph(S_litcorr) && !lev->waslit) 730. show_glyph(x,y, lev->glyph = cmap_to_glyph(S_corr)); 731. #endif 732. } 733. /* draw monster on top if we can sense it */ 734. if ((x != u.ux || y != u.uy) && (mon = m_at(x,y)) && sensemon(mon)) 735. display_monster(x, y, mon, 736. (tp_sensemon(mon) || MATCH_WARN_OF_MON(mon)) ? PHYSICALLY_SEEN : DETECTED, 737. is_worm_tail(mon)); 738. } 739. 740. /* 741. * newsym() 742. * 743. * Possibly put a new glyph at the given location. 744. */ 745. void 746. newsym(x,y) 747. register int x,y; 748. { 749. register struct monst *mon; 750. register struct rm *lev = &(levl[x][y]); 751. register int see_it; 752. register xchar worm_tail; 753. 754. if (in_mklev) return; 755. 756. /* only permit updating the hero when swallowed */ 757. if (u.uswallow) { 758. if (x == u.ux && y == u.uy) display_self(); 759. return; 760. } 761. if (Underwater && !Is_waterlevel(&u.uz)) { 762. /* don't do anything unless (x,y) is an adjacent underwater position */ 763. int dx, dy; 764. if (!is_pool(x,y)) return; 765. dx = x - u.ux; if (dx < 0) dx = -dx; 766. dy = y - u.uy; if (dy < 0) dy = -dy; 767. if (dx > 1 || dy > 1) return; 768. } 769. 770. /* Can physically see the location. */ 771. if (cansee(x,y)) { 772. NhRegion* reg = visible_region_at(x,y); 773. /* 774. * Don't use templit here: E.g. 775. * 776. * lev->waslit = !!(lev->lit || templit(x,y)); 777. * 778. * Otherwise we have the "light pool" problem, where non-permanently 779. * lit areas just out of sight stay remembered as lit. They should 780. * re-darken. 781. * 782. * Perhaps ALL areas should revert to their "unlit" look when 783. * out of sight. 784. */ 785. lev->waslit = (lev->lit!=0); /* remember lit condition */ 786. 787. if (reg != NULL && ACCESSIBLE(lev->typ)) { 788. show_region(reg,x,y); 789. return; 790. } 791. if (x == u.ux && y == u.uy) { 792. if (senseself()) { 793. _map_location(x,y,0); /* map *under* self */ 794. display_self(); 795. } else 796. /* we can see what is there */ 797. _map_location(x,y,1); 798. } 799. else { 800. mon = m_at(x,y); 801. worm_tail = is_worm_tail(mon); 802. see_it = mon && (worm_tail 803. ? (!mon->minvis || See_invisible) 804. : (mon_visible(mon)) || tp_sensemon(mon) || MATCH_WARN_OF_MON(mon)); 805. if (mon && (see_it || (!worm_tail && Detect_monsters))) { 806. if (mon->mtrapped) { 807. struct trap *trap = t_at(x, y); 808. int tt = trap ? trap->ttyp : NO_TRAP; 809. 810. /* if monster is in a physical trap, you see the trap too */ 811. if (tt == BEAR_TRAP || tt == PIT || 812. tt == SPIKED_PIT ||tt == WEB) { 813. trap->tseen = TRUE; 814. } 815. } 816. _map_location(x,y,0); /* map under the monster */ 817. /* also gets rid of any invisibility glyph */ 818. display_monster(x, y, mon, see_it? PHYSICALLY_SEEN : DETECTED, worm_tail); 819. } 820. else if (mon && mon_warning(mon) && !is_worm_tail(mon)) 821. display_warning(mon); 822. else if (memory_is_invisible(x,y)) 823. map_invisible(x, y); 824. else 825. _map_location(x,y,1); /* map the location */ 826. } 827. } 828. 829. /* Can't see the location. */ 830. else { 831. if (x == u.ux && y == u.uy) { 832. feel_location(u.ux, u.uy); /* forces an update */ 833. 834. if (senseself()) display_self(); 835. } 836. else if ((mon = m_at(x,y)) 837. && ((see_it = (tp_sensemon(mon) || MATCH_WARN_OF_MON(mon) 838. || (see_with_infrared(mon) && mon_visible(mon)))) 839. || Detect_monsters) 840. && !is_worm_tail(mon)) { 841. /* Monsters are printed every time. */ 842. /* This also gets rid of any invisibility glyph */ 843. display_monster(x, y, mon, see_it ? 0 : DETECTED, 0); 844. } 845. else if ((mon = m_at(x,y)) && mon_warning(mon) && 846. !is_worm_tail(mon)) { 847. display_warning(mon); 848. } 849. 850. /* 851. * If the location is remembered as being both dark (waslit is false) 852. * and lit (glyph is a lit room or lit corridor) then it was either: 853. * 854. * (1) A dark location that the hero could see through night 855. * vision. 856. * 857. * (2) Darkened while out of the hero's sight. This can happen 858. * when cursed scroll of light is read. 859. * 860. * In either case, we have to manually correct the hero's memory to 861. * match waslit. Deciding when to change waslit is non-trivial. 862. * 863. * Note: If flags.lit_corridor is set, then corridors act like room 864. * squares. That is, they light up if in night vision range. 865. * If flags.lit_corridor is not set, then corridors will 866. * remain dark unless lit by a light spell and may darken 867. * again, as discussed above. 868. * 869. * These checks and changes must be here and not in back_to_glyph(). 870. * They are dependent on the position being out of sight. 871. */ 872. else if (!lev->waslit) { 873. #ifdef DISPLAY_LAYERS 874. if (lev->mem_bg == S_litcorr && lev->typ == CORR) { 875. lev->mem_bg = S_corr; 876. show_glyph(x, y, memory_glyph(x, y)); 877. } else if (lev->mem_bg == S_room && lev->typ == ROOM) { 878. lev->mem_bg = S_stone; 879. show_glyph(x, y, memory_glyph(x, y)); 880. } 881. #else /* DISPLAY_LAYERS */ 882. if (lev->glyph == cmap_to_glyph(S_litcorr) && lev->typ == CORR) 883. show_glyph(x, y, lev->glyph = cmap_to_glyph(S_corr)); 884. else if (lev->glyph == cmap_to_glyph(S_room) && lev->typ == ROOM) 885. show_glyph(x, y, lev->glyph = cmap_to_glyph(S_stone)); 886. #endif /* DISPLAY_LAYERS */ 887. else 888. goto show_mem; 889. } else { 890. show_mem: 891. show_glyph(x, y, memory_glyph(x, y)); 892. } 893. } 894. } 895. 896. #undef is_worm_tail 897. 898. /* 899. * shieldeff() 900. * 901. * Put magic shield pyrotechnics at the given location. This *could* be 902. * pulled into a platform dependent routine for fancier graphics if desired. 903. */ 904. void 905. shieldeff(x,y) 906. xchar x,y; 907. { 908. register int i; 909. 910. if (!flags.sparkle) return; 911. if (cansee(x,y)) { /* Don't see anything if can't see the location */ 912. #ifdef ALLEG_FX 913. if (iflags.usealleg) { 914. newsym(x,y); 915. if(alleg_shield(x,y)) 916. return; 917. } 918. #endif 919. for (i = 0; i < SHIELD_COUNT; i++) { 920. show_glyph(x, y, cmap_to_glyph(shield_static[i])); 921. flush_screen(1); /* make sure the glyph shows up */ 922. delay_output(); 923. } 924. newsym(x,y); /* restore the old information */ 925. } 926. } 927. 928. 929. /* 930. * tmp_at() 931. * 932. * Temporarily place glyphs on the screen. Do not call delay_output(). It 933. * is up to the caller to decide if it wants to wait [presently, everyone 934. * but explode() wants to delay]. 935. * 936. * Call: 937. * (DISP_BEAM, glyph) open, initialize glyph 938. * (DISP_BEAM_ALWAYS, glyph) open, initialize glyph 939. * (DISP_FLASH, glyph) open, initialize glyph 940. * (DISP_ALWAYS, glyph) open, initialize glyph 941. * (DISP_CHANGE, glyph) change glyph 942. * (DISP_END, 0) close & clean up (second argument doesn't 943. * matter) 944. * (DISP_FREEMEM, 0) only used to prevent memory leak during 945. * exit) 946. * (x, y) display the glyph at the location 947. * 948. * DISP_BEAM - Display the given glyph at each location, but do not erase 949. * any until the close call. 950. * WAC added beam_always for lightning strikes 951. * DISP_BEAM_ALWAYS- Like DISP_BEAM, but vision is not taken into account. 952. * DISP_FLASH - Display the given glyph at each location, but erase the 953. * previous location's glyph. 954. * DISP_ALWAYS- Like DISP_FLASH, but vision is not taken into account. 955. */ 956. 957. static struct tmp_glyph { 958. coord saved[COLNO]; /* previously updated positions */ 959. int sidx; /* index of next unused slot in saved[] */ 960. int style; /* either DISP_BEAM or DISP_FLASH or DISP_ALWAYS */ 961. int glyph; /* glyph to use when printing */ 962. struct tmp_glyph *cont; /* Used if saved[] is full */ 963. struct tmp_glyph *prev; 964. } tgfirst; 965. static struct tmp_glyph *tglyph = (struct tmp_glyph *)0; 966. 967. void 968. tmp_at(x, y) 969. int x, y; 970. { 971. struct tmp_glyph *tmp, *cont; 972. 973. switch (x) { 974. case DISP_BEAM: 975. case DISP_BEAM_ALWAYS: 976. case DISP_FLASH: 977. case DISP_ALWAYS: 978. if (!tglyph) 979. tmp = &tgfirst; 980. else /* nested effect; we need dynamic memory */ 981. tmp = (struct tmp_glyph *)alloc(sizeof (struct tmp_glyph)); 982. tmp->prev = tglyph; 983. tglyph = tmp; 984. tglyph->sidx = 0; 985. tglyph->style = x; 986. tglyph->glyph = y; 987. tglyph->cont = (struct tmp_glyph *)0; 988. flush_screen(0); /* flush buffered glyphs */ 989. return; 990. case DISP_FREEMEM: /* in case game ends with tmp_at() in progress */ 991. while (tglyph) { 992. cont = tglyph->cont; 993. while (cont) { 994. tmp = cont->cont; 995. if (cont != &tgfirst) free((genericptr_t)cont); 996. cont = tmp; 997. } 998. tmp = tglyph->prev; 999. if (tglyph != &tgfirst) free((genericptr_t)tglyph); 1000. tglyph = tmp; 1001. } 1002. return; 1003. 1004. default: 1005. break; 1006. } 1007. 1008. if (!tglyph) panic("tmp_at: tglyph not initialized"); 1009. 1010. switch (x) { 1011. case DISP_CHANGE: 1012. tglyph->glyph = y; 1013. break; 1014. 1015. case DISP_END: 1016. if (tglyph->style == DISP_BEAM || tglyph->style == DISP_BEAM_ALWAYS) { 1017. register int i; 1018. 1019. /* Erase (reset) from source to end */ 1020. for (i = 0; i < tglyph->sidx; i++) 1021. newsym(tglyph->saved[i].x, tglyph->saved[i].y); 1022. cont = tglyph->cont; 1023. while (cont) { 1024. for (i = 0; i < cont->sidx; i++) 1025. newsym(cont->saved[i].x, cont->saved[i].y); 1026. tmp = cont->cont; 1027. if (cont != &tgfirst) free((genericptr_t)cont); 1028. cont = tmp; 1029. } 1030. /* tglyph->cont = (struct tmp_glyph *)0; */ 1031. } else { /* DISP_FLASH or DISP_ALWAYS */ 1032. if (tglyph->sidx) /* been called at least once */ 1033. newsym(tglyph->saved[0].x, tglyph->saved[0].y); 1034. } 1035. /* tglyph->sidx = 0; -- about to be freed, so not necessary */ 1036. tmp = tglyph->prev; 1037. if (tglyph != &tgfirst) free((genericptr_t)tglyph); 1038. tglyph = tmp; 1039. break; 1040. 1041. default: /* do it */ 1042. if (tglyph->style == DISP_BEAM || tglyph->style == DISP_BEAM_ALWAYS) { 1043. if (!cansee(x,y) && tglyph->style == DISP_BEAM) break; 1044. /* save pos for later erasing */ 1045. if (tglyph->sidx >= SIZE(tglyph->saved)) { 1046. tmp = (struct tmp_glyph *)alloc(sizeof (struct tmp_glyph)); 1047. *tmp = *tglyph; 1048. tglyph->prev = (struct tmp_glyph *)0; 1049. tmp->cont = tglyph; 1050. tglyph = tmp; 1051. tglyph->sidx = 0; 1052. } 1053. tglyph->saved[tglyph->sidx].x = x; 1054. tglyph->saved[tglyph->sidx].y = y; 1055. tglyph->sidx += 1; 1056. } else { /* DISP_FLASH/ALWAYS */ 1057. if (tglyph->sidx) { /* not first call, so reset previous pos */ 1058. newsym(tglyph->saved[0].x, tglyph->saved[0].y); 1059. tglyph->sidx = 0; /* display is presently up to date */ 1060. } 1061. if (!cansee(x,y) && tglyph->style != DISP_ALWAYS) break; 1062. tglyph->saved[0].x = x; 1063. tglyph->saved[0].y = y; 1064. tglyph->sidx = 1; 1065. } 1066. 1067. show_glyph(x, y, tglyph->glyph); /* show it */ 1068. flush_screen(0); /* make sure it shows up */ 1069. break; 1070. } /* end case */ 1071. } 1072. 1073. #ifdef DISPLAY_LAYERS 1074. int 1075. glyph_is_floating(glyph) 1076. int glyph; 1077. { 1078. return glyph_is_monster(glyph) || glyph_is_explosion(glyph) || 1079. glyph_is_zap_beam(glyph) || glyph_is_swallow(glyph) || 1080. glyph_is_warning(glyph) || tglyph && glyph == tglyph->glyph; 1081. } 1082. #endif 1083. 1084. /* 1085. * swallowed() 1086. * 1087. * The hero is swallowed. Show a special graphics sequence for this. This 1088. * bypasses all of the display routines and messes with buffered screen 1089. * directly. This method works because both vision and display check for 1090. * being swallowed. 1091. */ 1092. void 1093. swallowed(first) 1094. int first; 1095. { 1096. static xchar lastx, lasty; /* last swallowed position */ 1097. int swallower, left_ok, rght_ok; 1098. 1099. if (first) 1100. cls(); 1101. else { 1102. register int x, y; 1103. 1104. /* Clear old location */ 1105. for (y = lasty-1; y <= lasty+1; y++) 1106. for (x = lastx-1; x <= lastx+1; x++) 1107. if (isok(x,y)) show_glyph(x,y,cmap_to_glyph(S_stone)); 1108. } 1109. 1110. #ifdef ALLEG_FX 1111. if(!iflags.usealleg || !alleg_swallowed(u.ux,u.uy)) { 1112. #endif 1113. swallower = monsndx(u.ustuck->data); 1114. /* assume isok(u.ux,u.uy) */ 1115. left_ok = isok(u.ux-1,u.uy); 1116. rght_ok = isok(u.ux+1,u.uy); 1117. /* 1118. * Display the hero surrounded by the monster's stomach. 1119. */ 1120. if(isok(u.ux, u.uy-1)) { 1121. if (left_ok) 1122. show_glyph(u.ux-1, u.uy-1, swallow_to_glyph(swallower, S_sw_tl)); 1123. show_glyph(u.ux , u.uy-1, swallow_to_glyph(swallower, S_sw_tc)); 1124. if (rght_ok) 1125. show_glyph(u.ux+1, u.uy-1, swallow_to_glyph(swallower, S_sw_tr)); 1126. } 1127. 1128. if (left_ok) 1129. show_glyph(u.ux-1, u.uy , swallow_to_glyph(swallower, S_sw_ml)); 1130. display_self(); 1131. if (rght_ok) 1132. show_glyph(u.ux+1, u.uy , swallow_to_glyph(swallower, S_sw_mr)); 1133. 1134. if(isok(u.ux, u.uy+1)) { 1135. if (left_ok) 1136. show_glyph(u.ux-1, u.uy+1, swallow_to_glyph(swallower, S_sw_bl)); 1137. show_glyph(u.ux , u.uy+1, swallow_to_glyph(swallower, S_sw_bc)); 1138. if (rght_ok) 1139. show_glyph(u.ux+1, u.uy+1, swallow_to_glyph(swallower, S_sw_br)); 1140. } 1141. #ifdef ALLEG_FX 1142. } 1143. #endif 1144. 1145. /* Update the swallowed position. */ 1146. lastx = u.ux; 1147. lasty = u.uy; 1148. } 1149. 1150. /* 1151. * under_water() 1152. * 1153. * Similar to swallowed() in operation. Shows hero when underwater 1154. * except when in water level. Special routines exist for that. 1155. */ 1156. void 1157. under_water(mode) 1158. int mode; 1159. { 1160. static xchar lastx, lasty; 1161. static boolean dela; 1162. register int x, y; 1163. 1164. /* swallowing has a higher precedence than under water */ 1165. if (Is_waterlevel(&u.uz) || u.uswallow) return; 1166. 1167. /* full update */ 1168. if (mode == 1 || dela) { 1169. cls(); 1170. dela = FALSE; 1171. } 1172. /* delayed full update */ 1173. else if (mode == 2) { 1174. dela = TRUE; 1175. return; 1176. } 1177. /* limited update */ 1178. else { 1179. for (y = lasty-1; y <= lasty+1; y++) 1180. for (x = lastx-1; x <= lastx+1; x++) 1181. if (isok(x,y)) 1182. show_glyph(x,y,cmap_to_glyph(S_stone)); 1183. } 1184. for (x = u.ux-1; x <= u.ux+1; x++) 1185. for (y = u.uy-1; y <= u.uy+1; y++) 1186. if (isok(x,y) && is_pool(x,y)) { 1187. if (Blind && !(x == u.ux && y == u.uy)) 1188. show_glyph(x,y,cmap_to_glyph(S_stone)); 1189. else 1190. newsym(x,y); 1191. } 1192. lastx = u.ux; 1193. lasty = u.uy; 1194. } 1195. 1196. /* 1197. * under_ground() 1198. * 1199. * Very restricted display. You can only see yourself. 1200. */ 1201. void 1202. under_ground(mode) 1203. int mode; 1204. { 1205. static boolean dela; 1206. 1207. /* swallowing has a higher precedence than under ground */ 1208. if (u.uswallow) return; 1209. 1210. /* full update */ 1211. if (mode == 1 || dela) { 1212. cls(); 1213. dela = FALSE; 1214. } 1215. /* delayed full update */ 1216. else if (mode == 2) { 1217. dela = TRUE; 1218. return; 1219. } 1220. /* limited update */ 1221. else 1222. newsym(u.ux,u.uy); 1223. } 1224. 1225. 1226. /* ========================================================================= */ 1227. 1228. /* 1229. * Loop through all of the monsters and update them. Called when: 1230. * + going blind & telepathic 1231. * + regaining sight & telepathic 1232. * + getting and losing infravision 1233. * + hallucinating 1234. * + doing a full screen redraw 1235. * + see invisible times out or a ring of see invisible is taken off 1236. * + when a potion of see invisible is quaffed or a ring of see 1237. * invisible is put on 1238. * + gaining telepathy when blind [givit() in eat.c, pleased() in pray.c] 1239. * + losing telepathy while blind [xkilled() in mon.c, attrcurse() in 1240. * sit.c] 1241. */ 1242. void 1243. see_monsters() 1244. { 1245. register struct monst *mon; 1246. 1247. if (defer_see_monsters) return; 1248. 1249. for (mon = fmon; mon; mon = mon->nmon) { 1250. if (DEADMONSTER(mon)) continue; 1251. newsym(mon->mx,mon->my); 1252. if (mon->wormno) see_wsegs(mon); 1253. } 1254. #ifdef STEED 1255. /* when mounted, hero's location gets caught by monster loop */ 1256. if (!u.usteed) 1257. #endif 1258. newsym(u.ux, u.uy); 1259. } 1260. 1261. /* 1262. * Block/unblock light depending on what a mimic is mimicing and if it's 1263. * invisible or not. Should be called only when the state of See_invisible 1264. * changes. 1265. */ 1266. void 1267. set_mimic_blocking() 1268. { 1269. register struct monst *mon; 1270. 1271. for (mon = fmon; mon; mon = mon->nmon) { 1272. if (DEADMONSTER(mon)) continue; 1273. if (mon->minvis && 1274. ((mon->m_ap_type == M_AP_FURNITURE && 1275. (mon->mappearance == S_vcdoor || mon->mappearance == S_hcdoor)) || 1276. (mon->m_ap_type == M_AP_OBJECT && mon->mappearance == BOULDER))) { 1277. if(See_invisible) 1278. block_point(mon->mx, mon->my); 1279. else 1280. unblock_point(mon->mx, mon->my); 1281. } 1282. } 1283. } 1284. 1285. /* 1286. * Loop through all of the object *locations* and update them. Called when 1287. * + hallucinating. 1288. */ 1289. void 1290. see_objects() 1291. { 1292. register struct obj *obj; 1293. for(obj = fobj; obj; obj = obj->nobj) 1294. if (vobj_at(obj->ox,obj->oy) == obj) newsym(obj->ox, obj->oy); 1295. } 1296. 1297. /* 1298. * Update hallucinated traps. 1299. */ 1300. void 1301. see_traps() 1302. { 1303. struct trap *trap; 1304. int glyph; 1305. 1306. for (trap = ftrap; trap; trap = trap->ntrap) { 1307. glyph = glyph_at(trap->tx, trap->ty); 1308. if (glyph_is_trap(glyph)) 1309. newsym(trap->tx, trap->ty); 1310. } 1311. } 1312. 1313. /* 1314. * Put the cursor on the hero. Flush all accumulated glyphs before doing it. 1315. */ 1316. void 1317. curs_on_u() 1318. { 1319. flush_screen(1); /* Flush waiting glyphs & put cursor on hero */ 1320. } 1321. 1322. int 1323. doredraw() 1324. { 1325. docrt(); 1326. return 0; 1327. } 1328. 1329. void 1330. docrt() 1331. { 1332. register int x,y; 1333. register struct rm *lev; 1334. int i, glyph; 1335. 1336. if (!u.ux) return; /* display isn't ready yet */ 1337. 1338. transp = FALSE; 1339. if (tileset[0]) 1340. for(i = 0; i < no_tilesets; ++i) 1341. if (!strcmpi(tileset, tilesets[i].name)) { 1342. transp = !!(tilesets[i].flags & TILESET_TRANSPARENT); 1343. break; 1344. } 1345. 1346. if (u.uswallow) { 1347. swallowed(1); 1348. return; 1349. } 1350. if (Underwater && !Is_waterlevel(&u.uz)) { 1351. under_water(1); 1352. return; 1353. } 1354. if (u.uburied) { 1355. under_ground(1); 1356. return; 1357. } 1358. 1359. /* shut down vision */ 1360. vision_recalc(2); 1361. 1362. /* 1363. * This routine assumes that cls() does the following: 1364. * + fills the physical screen with the symbol for rock 1365. * + clears the glyph buffer 1366. */ 1367. cls(); 1368. 1369. /* display memory */ 1370. for (x = 1; x < COLNO; x++) { 1371. lev = &levl[x][0]; 1372. for (y = 0; y < ROWNO; y++, lev++) 1373. if ((glyph = memory_glyph(x,y)) != cmap_to_glyph(S_stone)) 1374. show_glyph(x,y,glyph); 1375. } 1376. 1377. /* see what is to be seen */ 1378. vision_recalc(0); 1379. 1380. /* overlay with monsters */ 1381. see_monsters(); 1382. 1383. flags.botlx = 1; /* force a redraw of the bottom line */ 1384. 1385. } 1386. 1387. 1388. /* ========================================================================= */ 1389. /* Glyph Buffering (3rd screen) ============================================ */ 1390. 1391. typedef struct { 1392. xchar new; /* perhaps move this bit into the rm strucure. */ 1393. int glyph; 1394. } gbuf_entry; 1395. 1396. static gbuf_entry gbuf[ROWNO][COLNO]; 1397. static char gbuf_start[ROWNO]; 1398. static char gbuf_stop[ROWNO]; 1399. 1400. /* 1401. * Store the glyph in the 3rd screen for later flushing. 1402. */ 1403. void 1404. show_glyph(x,y,glyph) 1405. int x, y, glyph; 1406. { 1407. /* 1408. * Check for bad positions and glyphs. 1409. */ 1410. if (!isok(x, y)) { 1411. const char *text; 1412. int offset; 1413. 1414. /* column 0 is invalid, but it's often used as a flag, so ignore it */ 1415. if (x == 0) return; 1416. 1417. /* 1418. * This assumes an ordering of the offsets. See display.h for 1419. * the definition. 1420. */ 1421. 1422. if (glyph >= GLYPH_WARNING_OFF) { /* a warning */ 1423. text = "warning"; offset = glyph - GLYPH_WARNING_OFF; 1424. } else if (glyph >= GLYPH_SWALLOW_OFF) { /* swallow border */ 1425. text = "swallow border"; offset = glyph - GLYPH_SWALLOW_OFF; 1426. } else if (glyph >= GLYPH_ZAP_OFF) { /* zap beam */ 1427. text = "zap beam"; offset = glyph - GLYPH_ZAP_OFF; 1428. } else if (glyph >= GLYPH_EXPLODE_OFF) { /* explosion */ 1429. text = "explosion"; offset = glyph - GLYPH_EXPLODE_OFF; 1430. } else if (glyph >= GLYPH_CMAP_OFF) { /* cmap */ 1431. text = "cmap_index"; offset = glyph - GLYPH_CMAP_OFF; 1432. } else if (glyph >= GLYPH_OBJ_OFF) { /* object */ 1433. text = "object"; offset = glyph - GLYPH_OBJ_OFF; 1434. } else if (glyph >= GLYPH_RIDDEN_OFF) { /* ridden mon */ 1435. text = "ridden mon"; offset = glyph - GLYPH_RIDDEN_OFF; 1436. } else if (glyph >= GLYPH_BODY_OFF) { /* a corpse */ 1437. text = "corpse"; offset = glyph - GLYPH_BODY_OFF; 1438. } else if (glyph >= GLYPH_DETECT_OFF) { /* detected mon */ 1439. text = "detected mon"; offset = glyph - GLYPH_DETECT_OFF; 1440. } else if (glyph >= GLYPH_INVIS_OFF) { /* invisible mon */ 1441. text = "invisible mon"; offset = glyph - GLYPH_INVIS_OFF; 1442. } else if (glyph >= GLYPH_PET_OFF) { /* a pet */ 1443. text = "pet"; offset = glyph - GLYPH_PET_OFF; 1444. } else { /* a monster */ 1445. text = "monster"; offset = glyph; 1446. } 1447. 1448. impossible("show_glyph: bad pos %d %d with glyph %d [%s %d].", 1449. x, y, glyph, text, offset); 1450. return; 1451. } 1452. 1453. if (glyph >= MAX_GLYPH) { 1454. impossible("show_glyph: bad glyph %d [max %d] at (%d,%d).", 1455. glyph, MAX_GLYPH, x, y); 1456. return; 1457. } 1458. 1459. /* [ALI] In transparent mode it is not sufficient just to consider 1460. * the foreground glyph, we also need to consider the background. 1461. * Rather than extend the display module to do this, for the time 1462. * being we just turn off optimization and rely on the windowing port 1463. * to ignore redundant calls to print_glyph(). 1464. */ 1465. if (transp || gbuf[y][x].glyph != glyph) { 1466. gbuf[y][x].glyph = glyph; 1467. gbuf[y][x].new = 1; 1468. if (gbuf_start[y] > x) gbuf_start[y] = x; 1469. if (gbuf_stop[y] < x) gbuf_stop[y] = x; 1470. } 1471. } 1472. 1473. 1474. /* 1475. * Reset the changed glyph borders so that none of the 3rd screen has 1476. * changed. 1477. */ 1478. #define reset_glyph_bbox() \ 1479. { \ 1480. int i; \ 1481. \ 1482. for (i = 0; i < ROWNO; i++) { \ 1483. gbuf_start[i] = COLNO-1; \ 1484. gbuf_stop[i] = 0; \ 1485. } \ 1486. } 1487. 1488. 1489. static gbuf_entry nul_gbuf = { 0, cmap_to_glyph(S_stone) }; 1490. /* 1491. * Turn the 3rd screen into stone. 1492. */ 1493. void 1494. clear_glyph_buffer() 1495. { 1496. register int x, y; 1497. register gbuf_entry *gptr; 1498. 1499. for (y = 0; y < ROWNO; y++) { 1500. gptr = &gbuf[y][0]; 1501. for (x = COLNO; x; x--) { 1502. *gptr++ = nul_gbuf; 1503. } 1504. } 1505. reset_glyph_bbox(); 1506. } 1507. 1508. /* 1509. * Assumes that the indicated positions are filled with S_stone glyphs. 1510. */ 1511. void 1512. row_refresh(start,stop,y) 1513. int start,stop,y; 1514. { 1515. register int x; 1516. 1517. for (x = start; x <= stop; x++) 1518. if (gbuf[y][x].glyph != cmap_to_glyph(S_stone)) 1519. print_glyph(WIN_MAP,x,y,gbuf[y][x].glyph); 1520. } 1521. 1522. void 1523. cls() 1524. { 1525. display_nhwindow(WIN_MESSAGE, FALSE); /* flush messages */ 1526. flags.botlx = 1; /* force update of botl window */ 1527. clear_nhwindow(WIN_MAP); /* clear physical screen */ 1528. clear_glyph_buffer(); /* this is sort of an extra effort, but OK */ 1529. } 1530. 1531. /* 1532. * Synch the third screen with the display. 1533. */ 1534. void 1535. flush_screen(cursor_on_u) 1536. int cursor_on_u; 1537. { 1538. /* Prevent infinite loops on errors: 1539. * flush_screen->print_glyph->impossible->pline->flush_screen 1540. */ 1541. static boolean flushing = 0; 1542. static boolean delay_flushing = 0; 1543. register int x,y; 1544. 1545. if (cursor_on_u == -1) delay_flushing = !delay_flushing; 1546. if (delay_flushing) return; 1547. if (flushing) return; /* if already flushing then return */ 1548. flushing = 1; 1549. 1550. for (y = 0; y < ROWNO; y++) { 1551. register gbuf_entry *gptr = &gbuf[y][x = gbuf_start[y]]; 1552. for (; x <= gbuf_stop[y]; gptr++, x++) 1553. if (gptr->new) { 1554. print_glyph(WIN_MAP,x,y,gptr->glyph); 1555. gptr->new = 0; 1556. } 1557. } 1558. 1559. if (cursor_on_u) curs(WIN_MAP, u.ux,u.uy); /* move cursor to the hero */ 1560. display_nhwindow(WIN_MAP, FALSE); 1561. reset_glyph_bbox(); 1562. #ifdef ALLEG_FX 1563. if (iflags.usealleg) alleg_vid_refresh(); 1564. #endif 1565. flushing = 0; 1566. if(flags.botl || flags.botlx) bot(); 1567. } 1568. 1569. /* ========================================================================= */ 1570. 1571. /* 1572. * back_to_cmap() 1573. * 1574. * Use the information in the rm structure at the given position to create 1575. * a glyph of a background. 1576. * 1577. * I had to add a field in the rm structure (horizontal) so that we knew 1578. * if open doors and secret doors were horizontal or vertical. Previously, 1579. * the screen symbol had the horizontal/vertical information set at 1580. * level generation time. 1581. * 1582. * I used the 'ladder' field (really doormask) for deciding if stairwells 1583. * were up or down. I didn't want to check the upstairs and dnstairs 1584. * variables. 1585. */ 1586. STATIC_OVL int 1587. back_to_cmap(x,y) 1588. xchar x,y; 1589. { 1590. int idx; 1591. struct rm *ptr = &(levl[x][y]); 1592. 1593. switch (ptr->typ) { 1594. /* KMH -- support arboreal levels */ 1595. case SCORR: 1596. case STONE: 1597. idx = level.flags.arboreal ? S_tree : S_stone; 1598. break; 1599. case ROOM: idx = S_room; break; 1600. case CORR: 1601. idx = (ptr->waslit || flags.lit_corridor) ? S_litcorr : S_corr; 1602. break; 1603. case HWALL: 1604. case VWALL: 1605. case TLCORNER: 1606. case TRCORNER: 1607. case BLCORNER: 1608. case BRCORNER: 1609. case CROSSWALL: 1610. case TUWALL: 1611. case TDWALL: 1612. case TLWALL: 1613. case TRWALL: 1614. case SDOOR: 1615. idx = ptr->seenv ? wall_angle(ptr) : S_stone; 1616. break; 1617. case IRONBARS: idx = S_bars; break; 1618. case DOOR: 1619. if (ptr->doormask) { 1620. if (ptr->doormask & D_BROKEN) 1621. idx = S_ndoor; 1622. else if (ptr->doormask & D_ISOPEN) 1623. idx = (ptr->horizontal) ? S_hodoor : S_vodoor; 1624. else /* else is closed */ 1625. idx = (ptr->horizontal) ? S_hcdoor : S_vcdoor; 1626. } else 1627. idx = S_ndoor; 1628. break; 1629. case TREE: idx = S_tree; break; 1630. case POOL: 1631. case MOAT: idx = S_pool; break; 1632. case STAIRS: 1633. idx = (ptr->ladder & LA_DOWN) ? S_dnstair : S_upstair; 1634. break; 1635. case LADDER: 1636. idx = (ptr->ladder & LA_DOWN) ? S_dnladder : S_upladder; 1637. break; 1638. case FOUNTAIN: idx = S_fountain; break; 1639. case SINK: idx = S_sink; break; 1640. case TOILET: idx = S_toilet; break; 1641. case GRAVE: idx = S_grave; break; 1642. case ALTAR: idx = S_altar; break; 1643. case THRONE: idx = S_throne; break; 1644. case LAVAPOOL: idx = S_lava; break; 1645. case ICE: idx = S_ice; break; 1646. case AIR: idx = S_air; break; 1647. case CLOUD: idx = S_cloud; break; 1648. case WATER: idx = S_water; break; 1649. case DBWALL: 1650. idx = (ptr->horizontal) ? S_hcdbridge : S_vcdbridge; 1651. break; 1652. case DRAWBRIDGE_UP: 1653. switch(ptr->drawbridgemask & DB_UNDER) { 1654. case DB_MOAT: idx = S_pool; break; 1655. case DB_LAVA: idx = S_lava; break; 1656. case DB_ICE: idx = S_ice; break; 1657. case DB_FLOOR: idx = S_room; break; 1658. default: 1659. impossible("Strange db-under: %d", 1660. ptr->drawbridgemask & DB_UNDER); 1661. idx = S_room; /* something is better than nothing */ 1662. break; 1663. } 1664. break; 1665. case DRAWBRIDGE_DOWN: 1666. idx = (ptr->horizontal) ? S_hodbridge : S_vodbridge; 1667. break; 1668. default: 1669. impossible("back_to_glyph: unknown level type [ = %d ]",ptr->typ); 1670. idx = S_room; 1671. break; 1672. } 1673. return idx; 1674. } 1675. 1676. int 1677. back_to_glyph(x,y) 1678. xchar x,y; 1679. { 1680. return cmap_to_glyph(back_to_cmap(x,y)); 1681. } 1682. 1683. 1684. /* 1685. * swallow_to_glyph() 1686. * 1687. * Convert a monster number and a swallow location into the correct glyph. 1688. * If you don't want a patchwork monster while hallucinating, decide on 1689. * a random monster in swallowed() and don't use what_mon() here. 1690. */ 1691. STATIC_OVL int 1692. swallow_to_glyph(mnum, loc) 1693. int mnum; 1694. int loc; 1695. { 1696. if (loc < S_sw_tl || S_sw_br < loc) { 1697. impossible("swallow_to_glyph: bad swallow location"); 1698. loc = S_sw_br; 1699. } 1700. return ((int) (what_mon(mnum)<<3) | (loc - S_sw_tl)) + GLYPH_SWALLOW_OFF; 1701. } 1702. 1703. 1704. 1705. /* 1706. * zapdir_to_glyph() 1707. * 1708. * Change the given zap direction and beam type into a glyph. Each beam 1709. * type has four glyphs, one for each of the symbols below. The order of 1710. * the zap symbols [0-3] as defined in rm.h are: 1711. * 1712. * | S_vbeam ( 0, 1) or ( 0,-1) 1713. * - S_hbeam ( 1, 0) or (-1, 0) 1714. * \ S_lslant ( 1, 1) or (-1,-1) 1715. * / S_rslant (-1, 1) or ( 1,-1) 1716. */ 1717. int 1718. zapdir_to_glyph(dx, dy, beam_type) 1719. register int dx, dy; 1720. int beam_type; 1721. { 1722. if (beam_type >= NUM_ZAP) { 1723. impossible("zapdir_to_glyph: illegal beam type"); 1724. beam_type = 0; 1725. } 1726. dx = (dx == dy) ? 2 : (dx && dy) ? 3 : dx ? 1 : 0; 1727. 1728. return ((int) ((beam_type << 2) | dx)) + GLYPH_ZAP_OFF; 1729. } 1730. 1731. 1732. /* 1733. * Utility routine for dowhatis() used to find out the glyph displayed at 1734. * the location. This isn't necessarily the same as the glyph in the levl 1735. * structure, so we must check the "third screen". 1736. */ 1737. int 1738. glyph_at(x, y) 1739. xchar x,y; 1740. { 1741. if(x < 0 || y < 0 || x >= COLNO || y >= ROWNO) 1742. return cmap_to_glyph(S_room); /* XXX */ 1743. return gbuf[y][x].glyph; 1744. } 1745. 1746. 1747. /* ------------------------------------------------------------------------- */ 1748. /* Wall Angle -------------------------------------------------------------- */ 1749. 1750. /*#define WA_VERBOSE*/ /* give (x,y) locations for all "bad" spots */ 1751. 1752. #ifdef WA_VERBOSE 1753. 1754. static const char *FDECL(type_to_name, (int)); 1755. static void FDECL(error4, (int,int,int,int,int,int)); 1756. 1757. static int bad_count[MAX_TYPE]; /* count of positions flagged as bad */ 1758. static const char *type_names[MAX_TYPE] = { 1759. "STONE", "VWALL", "HWALL", "TLCORNER", 1760. "TRCORNER", "BLCORNER", "BRCORNER", "CROSSWALL", 1761. "TUWALL", "TDWALL", "TLWALL", "TRWALL", 1762. "DBWALL", "SDOOR", "SCORR", "POOL", 1763. "MOAT", "WATER", "DRAWBRIDGE_UP","LAVAPOOL", 1764. "DOOR", "CORR", "ROOM", "STAIRS", 1765. "LADDER", "FOUNTAIN", "THRONE", "SINK", 1766. "ALTAR", "ICE", "DRAWBRIDGE_DOWN","AIR", 1767. "CLOUD" 1768. }; 1769. 1770. 1771. static const char * 1772. type_to_name(type) 1773. int type; 1774. { 1775. return (type < 0 || type > MAX_TYPE) ? "unknown" : type_names[type]; 1776. } 1777. 1778. STATIC_OVL void 1779. error4(x, y, a, b, c, dd) 1780. int x, y, a, b, c, dd; 1781. { 1782. pline("set_wall_state: %s @ (%d,%d) %s%s%s%s", 1783. type_to_name(levl[x][y].typ), x, y, 1784. a ? "1":"", b ? "2":"", c ? "3":"", dd ? "4":""); 1785. bad_count[levl[x][y].typ]++; 1786. } 1787. #endif /* WA_VERBOSE */ 1788. 1789. /* 1790. * Return 'which' if position is implies an unfinshed exterior. Return 1791. * zero otherwise. Unfinished implies outer area is rock or a corridor. 1792. * 1793. * Things that are ambigious: lava 1794. */ 1795. STATIC_OVL int 1796. check_pos(x, y, which) 1797. int x, y, which; 1798. { 1799. int type; 1800. if (!isok(x,y)) return which; 1801. type = levl[x][y].typ; 1802. if (IS_ROCK(type) || type == CORR || type == SCORR) return which; 1803. return 0; 1804. } 1805. 1806. /* Return TRUE if more than one is non-zero. */ 1807. /*ARGSUSED*/ 1808. #ifdef WA_VERBOSE 1809. STATIC_OVL boolean 1810. more_than_one(x, y, a, b, c) 1811. int x, y, a, b, c; 1812. { 1813. #if defined(MAC_MPW) 1814. # pragma unused ( x,y ) 1815. #endif 1816. if ((a && (b|c)) || (b && (a|c)) || (c && (a|b))) { 1817. error4(x,y,a,b,c,0); 1818. return TRUE; 1819. } 1820. return FALSE; 1821. } 1822. #else 1823. #define more_than_one(x, y, a, b, c) (((a) && ((b)|(c))) || ((b) && ((a)|(c))) || ((c) && ((a)|(b)))) 1824. #endif 1825. 1826. /* Return the wall mode for a T wall. */ 1827. STATIC_OVL int 1828. set_twall(x0,y0, x1,y1, x2,y2, x3,y3) 1829. int x0,y0, x1,y1, x2,y2, x3,y3; 1830. { 1831. int wmode, is_1, is_2, is_3; 1832. 1833. is_1 = check_pos(x1, y1, WM_T_LONG); 1834. is_2 = check_pos(x2, y2, WM_T_BL); 1835. is_3 = check_pos(x3, y3, WM_T_BR); 1836. if (more_than_one(x0, y0, is_1, is_2, is_3)) { 1837. wmode = 0; 1838. } else { 1839. wmode = is_1 + is_2 + is_3; 1840. } 1841. return wmode; 1842. } 1843. 1844. /* Return wall mode for a horizontal or vertical wall. */ 1845. STATIC_OVL int 1846. set_wall(x, y, horiz) 1847. int x, y, horiz; 1848. { 1849. int wmode, is_1, is_2; 1850. 1851. if (horiz) { 1852. is_1 = check_pos(x,y-1, WM_W_TOP); 1853. is_2 = check_pos(x,y+1, WM_W_BOTTOM); 1854. } else { 1855. is_1 = check_pos(x-1,y, WM_W_LEFT); 1856. is_2 = check_pos(x+1,y, WM_W_RIGHT); 1857. } 1858. if (more_than_one(x, y, is_1, is_2, 0)) { 1859. wmode = 0; 1860. } else { 1861. wmode = is_1 + is_2; 1862. } 1863. return wmode; 1864. } 1865. 1866. /* 1867. * If an invisible monster has gone away, that will be discovered. If an 1868. * invisible monster has appeared, this will _not_ be discovered since 1869. * searching only finds one monster per turn so we must check that separately. 1870. * 1871. * Return a wall mode for a corner wall. (x4,y4) is the "inner" position. 1872. */ 1873. STATIC_OVL int 1874. set_corn(x1,y1, x2,y2, x3,y3, x4,y4) 1875. int x1, y1, x2, y2, x3, y3, x4, y4; 1876. { 1877. int wmode, is_1, is_2, is_3, is_4; 1878. 1879. is_1 = check_pos(x1, y1, 1); 1880. is_2 = check_pos(x2, y2, 1); 1881. is_3 = check_pos(x3, y3, 1); 1882. is_4 = check_pos(x4, y4, 1); /* inner location */ 1883. 1884. /* 1885. * All 4 should not be true. So if the inner location is rock, 1886. * use it. If all of the outer 3 are true, use outer. We currently 1887. * can't cover the case where only part of the outer is rock, so 1888. * we just say that all the walls are finished (if not overridden 1889. * by the inner section). 1890. */ 1891. if (is_4) { 1892. wmode = WM_C_INNER; 1893. } else if (is_1 && is_2 && is_3) 1894. wmode = WM_C_OUTER; 1895. else 1896. wmode = 0; /* finished walls on all sides */ 1897. 1898. return wmode; 1899. } 1900. 1901. /* Return mode for a crosswall. */ 1902. STATIC_OVL int 1903. set_crosswall(x, y) 1904. int x, y; 1905. { 1906. int wmode, is_1, is_2, is_3, is_4; 1907. 1908. is_1 = check_pos(x-1, y-1, 1); 1909. is_2 = check_pos(x+1, y-1, 1); 1910. is_3 = check_pos(x+1, y+1, 1); 1911. is_4 = check_pos(x-1, y+1, 1); 1912. 1913. wmode = is_1+is_2+is_3+is_4; 1914. if (wmode > 1) { 1915. if (is_1 && is_3 && (is_2+is_4 == 0)) { 1916. wmode = WM_X_TLBR; 1917. } else if (is_2 && is_4 && (is_1+is_3 == 0)) { 1918. wmode = WM_X_BLTR; 1919. } else { 1920. #ifdef WA_VERBOSE 1921. error4(x,y,is_1,is_2,is_3,is_4); 1922. #endif 1923. wmode = 0; 1924. } 1925. } else if (is_1) 1926. wmode = WM_X_TL; 1927. else if (is_2) 1928. wmode = WM_X_TR; 1929. else if (is_3) 1930. wmode = WM_X_BR; 1931. else if (is_4) 1932. wmode = WM_X_BL; 1933. 1934. return wmode; 1935. } 1936. 1937. /* Called from mklev. Scan the level and set the wall modes. */ 1938. void 1939. set_wall_state() 1940. { 1941. int x, y; 1942. int wmode; 1943. struct rm *lev; 1944. 1945. #ifdef WA_VERBOSE 1946. for (x = 0; x < MAX_TYPE; x++) bad_count[x] = 0; 1947. #endif 1948. 1949. for (x = 0; x < COLNO; x++) 1950. for (lev = &levl[x][0], y = 0; y < ROWNO; y++, lev++) { 1951. switch (lev->typ) { 1952. case SDOOR: 1953. wmode = set_wall(x, y, (int) lev->horizontal); 1954. break; 1955. case VWALL: 1956. wmode = set_wall(x, y, 0); 1957. break; 1958. case HWALL: 1959. wmode = set_wall(x, y, 1); 1960. break; 1961. case TDWALL: 1962. wmode = set_twall(x,y, x,y-1, x-1,y+1, x+1,y+1); 1963. break; 1964. case TUWALL: 1965. wmode = set_twall(x,y, x,y+1, x+1,y-1, x-1,y-1); 1966. break; 1967. case TLWALL: 1968. wmode = set_twall(x,y, x+1,y, x-1,y-1, x-1,y+1); 1969. break; 1970. case TRWALL: 1971. wmode = set_twall(x,y, x-1,y, x+1,y+1, x+1,y-1); 1972. break; 1973. case TLCORNER: 1974. wmode = set_corn(x-1,y-1, x,y-1, x-1,y, x+1,y+1); 1975. break; 1976. case TRCORNER: 1977. wmode = set_corn(x,y-1, x+1,y-1, x+1,y, x-1,y+1); 1978. break; 1979. case BLCORNER: 1980. wmode = set_corn(x,y+1, x-1,y+1, x-1,y, x+1,y-1); 1981. break; 1982. case BRCORNER: 1983. wmode = set_corn(x+1,y, x+1,y+1, x,y+1, x-1,y-1); 1984. break; 1985. case CROSSWALL: 1986. wmode = set_crosswall(x, y); 1987. break; 1988. 1989. default: 1990. wmode = -1; /* don't set wall info */ 1991. break; 1992. } 1993. 1994. if (wmode >= 0) 1995. lev->wall_info = (lev->wall_info & ~WM_MASK) | wmode; 1996. } 1997. 1998. #ifdef WA_VERBOSE 1999. /* check if any bad positions found */ 2000. for (x = y = 0; x < MAX_TYPE; x++) 2001. if (bad_count[x]) { 2002. if (y == 0) { 2003. y = 1; /* only print once */ 2004. pline("set_wall_type: wall mode problems with: "); 2005. } 2006. pline("%s %d;", type_names[x], bad_count[x]); 2007. } 2008. #endif /* WA_VERBOSE */ 2009. } 2010. 2011. /* ------------------------------------------------------------------------- */ 2012. /* This matrix is used here and in vision.c. */ 2013. unsigned char seenv_matrix[3][3] = { {SV2, SV1, SV0}, 2014. {SV3, SVALL, SV7}, 2015. {SV4, SV5, SV6} }; 2016. 2017. #define sign(z) ((z) < 0 ? -1 : ((z) > 0 ? 1 : 0)) 2018. 2019. /* Set the seen vector of lev as if seen from (x0,y0) to (x,y). */ 2020. STATIC_OVL void 2021. set_seenv(lev, x0, y0, x, y) 2022. struct rm *lev; 2023. int x0, y0, x, y; /* from, to */ 2024. { 2025. int dx = x-x0, dy = y0-y; 2026. lev->seenv |= seenv_matrix[sign(dy)+1][sign(dx)+1]; 2027. } 2028. 2029. /* ------------------------------------------------------------------------- */ 2030. 2031. /* T wall types, one for each row in wall_matrix[][]. */ 2032. #define T_d 0 2033. #define T_l 1 2034. #define T_u 2 2035. #define T_r 3 2036. 2037. /* 2038. * These are the column names of wall_matrix[][]. They are the "results" 2039. * of a tdwall pattern match. All T walls are rotated so they become 2040. * a tdwall. Then we do a single pattern match, but return the 2041. * correct result for the original wall by using different rows for 2042. * each of the wall types. 2043. */ 2044. #define T_stone 0 2045. #define T_tlcorn 1 2046. #define T_trcorn 2 2047. #define T_hwall 3 2048. #define T_tdwall 4 2049. 2050. static const int wall_matrix[4][5] = { 2051. { S_stone, S_tlcorn, S_trcorn, S_hwall, S_tdwall }, /* tdwall */ 2052. { S_stone, S_trcorn, S_brcorn, S_vwall, S_tlwall }, /* tlwall */ 2053. { S_stone, S_brcorn, S_blcorn, S_hwall, S_tuwall }, /* tuwall */ 2054. { S_stone, S_blcorn, S_tlcorn, S_vwall, S_trwall }, /* trwall */ 2055. }; 2056. 2057. 2058. /* Cross wall types, one for each "solid" quarter. Rows of cross_matrix[][]. */ 2059. #define C_bl 0 2060. #define C_tl 1 2061. #define C_tr 2 2062. #define C_br 3 2063. 2064. /* 2065. * These are the column names for cross_matrix[][]. They express results 2066. * in C_br (bottom right) terms. All crosswalls with a single solid 2067. * quarter are rotated so the solid section is at the bottom right. 2068. * We pattern match on that, but return the correct result depending 2069. * on which row we'ere looking at. 2070. */ 2071. #define C_trcorn 0 2072. #define C_brcorn 1 2073. #define C_blcorn 2 2074. #define C_tlwall 3 2075. #define C_tuwall 4 2076. #define C_crwall 5 2077. 2078. static const int cross_matrix[4][6] = { 2079. { S_brcorn, S_blcorn, S_tlcorn, S_tuwall, S_trwall, S_crwall }, 2080. { S_blcorn, S_tlcorn, S_trcorn, S_trwall, S_tdwall, S_crwall }, 2081. { S_tlcorn, S_trcorn, S_brcorn, S_tdwall, S_tlwall, S_crwall }, 2082. { S_trcorn, S_brcorn, S_blcorn, S_tlwall, S_tuwall, S_crwall }, 2083. }; 2084. 2085. 2086. /* Print out a T wall warning and all interesting info. */ 2087. STATIC_OVL void 2088. t_warn(lev) 2089. struct rm *lev; 2090. { 2091. static const char warn_str[] = "wall_angle: %s: case %d: seenv = 0x%x"; 2092. const char *wname; 2093. 2094. if (lev->typ == TUWALL) wname = "tuwall"; 2095. else if (lev->typ == TLWALL) wname = "tlwall"; 2096. else if (lev->typ == TRWALL) wname = "trwall"; 2097. else if (lev->typ == TDWALL) wname = "tdwall"; 2098. else wname = "unknown"; 2099. impossible(warn_str, wname, lev->wall_info & WM_MASK, 2100. (unsigned int) lev->seenv); 2101. } 2102. 2103. 2104. /* 2105. * Return the correct graphics character index using wall type, wall mode, 2106. * and the seen vector. It is expected that seenv is non zero. 2107. * 2108. * All T-wall vectors are rotated to be TDWALL. All single crosswall 2109. * blocks are rotated to bottom right. All double crosswall are rotated 2110. * to W_X_BLTR. All results are converted back. 2111. * 2112. * The only way to understand this is to take out pen and paper and 2113. * draw diagrams. See rm.h for more details on the wall modes and 2114. * seen vector (SV). 2115. */ 2116. STATIC_OVL int 2117. wall_angle(lev) 2118. struct rm *lev; 2119. { 2120. register unsigned int seenv = lev->seenv & 0xff; 2121. const int *row; 2122. int col, idx; 2123. 2124. #define only(sv, bits) (((sv) & (bits)) && ! ((sv) & ~(bits))) 2125. switch (lev->typ) { 2126. case TUWALL: 2127. row = wall_matrix[T_u]; 2128. seenv = (seenv >> 4 | seenv << 4) & 0xff;/* rotate to tdwall */ 2129. goto do_twall; 2130. case TLWALL: 2131. row = wall_matrix[T_l]; 2132. seenv = (seenv >> 2 | seenv << 6) & 0xff;/* rotate to tdwall */ 2133. goto do_twall; 2134. case TRWALL: 2135. row = wall_matrix[T_r]; 2136. seenv = (seenv >> 6 | seenv << 2) & 0xff;/* rotate to tdwall */ 2137. goto do_twall; 2138. case TDWALL: 2139. row = wall_matrix[T_d]; 2140. do_twall: 2141. switch (lev->wall_info & WM_MASK) { 2142. case 0: 2143. if (seenv == SV4) { 2144. col = T_tlcorn; 2145. } else if (seenv == SV6) { 2146. col = T_trcorn; 2147. } else if (seenv & (SV3|SV5|SV7) || 2148. ((seenv & SV4) && (seenv & SV6))) { 2149. col = T_tdwall; 2150. } else if (seenv & (SV0|SV1|SV2)) { 2151. col = (seenv & (SV4|SV6) ? T_tdwall : T_hwall); 2152. } else { 2153. t_warn(lev); 2154. col = T_stone; 2155. } 2156. break; 2157. case WM_T_LONG: 2158. if (seenv & (SV3|SV4) && !(seenv & (SV5|SV6|SV7))) { 2159. col = T_tlcorn; 2160. } else if (seenv&(SV6|SV7) && !(seenv&(SV3|SV4|SV5))) { 2161. col = T_trcorn; 2162. } else if ((seenv & SV5) || 2163. ((seenv & (SV3|SV4)) && (seenv & (SV6|SV7)))) { 2164. col = T_tdwall; 2165. } else { 2166. /* only SV0|SV1|SV2 */ 2167. if (! only(seenv, SV0|SV1|SV2) ) 2168. t_warn(lev); 2169. col = T_stone; 2170. } 2171. break; 2172. case WM_T_BL: 2173. #if 0 /* older method, fixed */ 2174. if (only(seenv, SV4|SV5)) { 2175. col = T_tlcorn; 2176. } else if ((seenv & (SV0|SV1|SV2)) && 2177. only(seenv, SV0|SV1|SV2|SV6|SV7)) { 2178. col = T_hwall; 2179. } else if (seenv & SV3 || 2180. ((seenv & (SV0|SV1|SV2)) && (seenv & (SV4|SV5)))) { 2181. col = T_tdwall; 2182. } else { 2183. if (seenv != SV6) 2184. t_warn(lev); 2185. col = T_stone; 2186. } 2187. #endif /* 0 */ 2188. if (only(seenv, SV4|SV5)) 2189. col = T_tlcorn; 2190. else if ((seenv & (SV0|SV1|SV2|SV7)) && 2191. !(seenv & (SV3|SV4|SV5))) 2192. col = T_hwall; 2193. else if (only(seenv, SV6)) 2194. col = T_stone; 2195. else 2196. col = T_tdwall; 2197. break; 2198. case WM_T_BR: 2199. #if 0 /* older method, fixed */ 2200. if (only(seenv, SV5|SV6)) { 2201. col = T_trcorn; 2202. } else if ((seenv & (SV0|SV1|SV2)) && 2203. only(seenv, SV0|SV1|SV2|SV3|SV4)) { 2204. col = T_hwall; 2205. } else if (seenv & SV7 || 2206. ((seenv & (SV0|SV1|SV2)) && (seenv & (SV5|SV6)))) { 2207. col = T_tdwall; 2208. } else { 2209. if (seenv != SV4) 2210. t_warn(lev); 2211. col = T_stone; 2212. } 2213. #endif /* 0 */ 2214. if (only(seenv, SV5|SV6)) 2215. col = T_trcorn; 2216. else if ((seenv & (SV0|SV1|SV2|SV3)) && 2217. !(seenv & (SV5|SV6|SV7))) 2218. col = T_hwall; 2219. else if (only(seenv, SV4)) 2220. col = T_stone; 2221. else 2222. col = T_tdwall; 2223. 2224. break; 2225. default: 2226. impossible("wall_angle: unknown T wall mode %d", 2227. lev->wall_info & WM_MASK); 2228. col = T_stone; 2229. break; 2230. } 2231. idx = row[col]; 2232. break; 2233. 2234. case SDOOR: 2235. if (lev->horizontal) goto horiz; 2236. /* fall through */ 2237. case VWALL: 2238. switch (lev->wall_info & WM_MASK) { 2239. case 0: idx = seenv ? S_vwall : S_stone; break; 2240. case 1: idx = seenv & (SV1|SV2|SV3|SV4|SV5) ? S_vwall : 2241. S_stone; 2242. break; 2243. case 2: idx = seenv & (SV0|SV1|SV5|SV6|SV7) ? S_vwall : 2244. S_stone; 2245. break; 2246. default: 2247. impossible("wall_angle: unknown vwall mode %d", 2248. lev->wall_info & WM_MASK); 2249. idx = S_stone; 2250. break; 2251. } 2252. break; 2253. 2254. case HWALL: 2255. horiz: 2256. switch (lev->wall_info & WM_MASK) { 2257. case 0: idx = seenv ? S_hwall : S_stone; break; 2258. case 1: idx = seenv & (SV3|SV4|SV5|SV6|SV7) ? S_hwall : 2259. S_stone; 2260. break; 2261. case 2: idx = seenv & (SV0|SV1|SV2|SV3|SV7) ? S_hwall : 2262. S_stone; 2263. break; 2264. default: 2265. impossible("wall_angle: unknown hwall mode %d", 2266. lev->wall_info & WM_MASK); 2267. idx = S_stone; 2268. break; 2269. } 2270. break; 2271. 2272. #define set_corner(idx, lev, which, outer, inner, name) \ 2273. switch ((lev)->wall_info & WM_MASK) { \ 2274. case 0: idx = which; break; \ 2275. case WM_C_OUTER: idx = seenv & (outer) ? which : S_stone; break; \ 2276. case WM_C_INNER: idx = seenv & ~(inner) ? which : S_stone; break; \ 2277. default: \ 2278. impossible("wall_angle: unknown %s mode %d", name, \ 2279. (lev)->wall_info & WM_MASK); \ 2280. idx = S_stone; \ 2281. break; \ 2282. } 2283. 2284. case TLCORNER: 2285. set_corner(idx, lev, S_tlcorn, (SV3|SV4|SV5), SV4, "tlcorn"); 2286. break; 2287. case TRCORNER: 2288. set_corner(idx, lev, S_trcorn, (SV5|SV6|SV7), SV6, "trcorn"); 2289. break; 2290. case BLCORNER: 2291. set_corner(idx, lev, S_blcorn, (SV1|SV2|SV3), SV2, "blcorn"); 2292. break; 2293. case BRCORNER: 2294. set_corner(idx, lev, S_brcorn, (SV7|SV0|SV1), SV0, "brcorn"); 2295. break; 2296. 2297. 2298. case CROSSWALL: 2299. switch (lev->wall_info & WM_MASK) { 2300. case 0: 2301. if (seenv == SV0) 2302. idx = S_brcorn; 2303. else if (seenv == SV2) 2304. idx = S_blcorn; 2305. else if (seenv == SV4) 2306. idx = S_tlcorn; 2307. else if (seenv == SV6) 2308. idx = S_trcorn; 2309. else if (!(seenv & ~(SV0|SV1|SV2)) && 2310. (seenv & SV1 || seenv == (SV0|SV2))) 2311. idx = S_tuwall; 2312. else if (!(seenv & ~(SV2|SV3|SV4)) && 2313. (seenv & SV3 || seenv == (SV2|SV4))) 2314. idx = S_trwall; 2315. else if (!(seenv & ~(SV4|SV5|SV6)) && 2316. (seenv & SV5 || seenv == (SV4|SV6))) 2317. idx = S_tdwall; 2318. else if (!(seenv & ~(SV0|SV6|SV7)) && 2319. (seenv & SV7 || seenv == (SV0|SV6))) 2320. idx = S_tlwall; 2321. else 2322. idx = S_crwall; 2323. break; 2324. 2325. case WM_X_TL: 2326. row = cross_matrix[C_tl]; 2327. seenv = (seenv >> 4 | seenv << 4) & 0xff; 2328. goto do_crwall; 2329. case WM_X_TR: 2330. row = cross_matrix[C_tr]; 2331. seenv = (seenv >> 6 | seenv << 2) & 0xff; 2332. goto do_crwall; 2333. case WM_X_BL: 2334. row = cross_matrix[C_bl]; 2335. seenv = (seenv >> 2 | seenv << 6) & 0xff; 2336. goto do_crwall; 2337. case WM_X_BR: 2338. row = cross_matrix[C_br]; 2339. do_crwall: 2340. if (seenv == SV4) 2341. idx = S_stone; 2342. else { 2343. seenv = seenv & ~SV4; /* strip SV4 */ 2344. if (seenv == SV0) { 2345. col = C_brcorn; 2346. } else if (seenv & (SV2|SV3)) { 2347. if (seenv & (SV5|SV6|SV7)) 2348. col = C_crwall; 2349. else if (seenv & (SV0|SV1)) 2350. col = C_tuwall; 2351. else 2352. col = C_blcorn; 2353. } else if (seenv & (SV5|SV6)) { 2354. if (seenv & (SV1|SV2|SV3)) 2355. col = C_crwall; 2356. else if (seenv & (SV0|SV7)) 2357. col = C_tlwall; 2358. else 2359. col = C_trcorn; 2360. } else if (seenv & SV1) { 2361. col = seenv & SV7 ? C_crwall : C_tuwall; 2362. } else if (seenv & SV7) { 2363. col = seenv & SV1 ? C_crwall : C_tlwall; 2364. } else { 2365. impossible( 2366. "wall_angle: bottom of crwall check"); 2367. col = C_crwall; 2368. } 2369. 2370. idx = row[col]; 2371. } 2372. break; 2373. 2374. case WM_X_TLBR: 2375. if ( only(seenv, SV1|SV2|SV3) ) 2376. idx = S_blcorn; 2377. else if ( only(seenv, SV5|SV6|SV7) ) 2378. idx = S_trcorn; 2379. else if ( only(seenv, SV0|SV4) ) 2380. idx = S_stone; 2381. else 2382. idx = S_crwall; 2383. break; 2384. 2385. case WM_X_BLTR: 2386. if ( only(seenv, SV0|SV1|SV7) ) 2387. idx = S_brcorn; 2388. else if ( only(seenv, SV3|SV4|SV5) ) 2389. idx = S_tlcorn; 2390. else if ( only(seenv, SV2|SV6) ) 2391. idx = S_stone; 2392. else 2393. idx = S_crwall; 2394. break; 2395. 2396. default: 2397. impossible("wall_angle: unknown crosswall mode"); 2398. idx = S_stone; 2399. break; 2400. } 2401. break; 2402. 2403. default: 2404. impossible("wall_angle: unexpected wall type %d", lev->typ); 2405. idx = S_stone; 2406. } 2407. return idx; 2408. } 2409. 2410. /*display.c*/